THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE. DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. the rotor since the previous transmission; (ii) the number of revolutions of the ansmometer since the previous transmission; (iii) the instantaneous magnetic heading of the bucy; (iv) the instantaneous bearing of the wind relative to the bucy. These wireless signals turn on the magnetic tape recording equipment in the land-based observatory so that the data is available for reduction in recorded form. The operation of the receiving station is entirely automatic except for occasional changing of reels of recording tape. The system in use at present works satisfactorily over distances up to 45 miles. Rough weather, even of moderate gale force, does not have the bucys. Calibration of the rotors was carried out in a tidal channel on the island. Because the buoys are free drifting they do not measure the velocity of the surface drift relative to the ocean bottom. They measure the vectorial difference of the surface velocity and the velocity at the depth of the drogue. The areas of the can and retor together (in the surface water) and of the drogue (in the deep water) are nearly equal so that the actual speed of the vectorial difference is twice the speed past the surface rotor. The orientation of the buoy is determined by the direction of the vectorial. difference. In this connection every effort has been made to reduce the area exposed to the wind. There is a small deflection (averaging 100) of the orientation of the buoy from the direction of the vectorial difference of surface and deep velocities, due to Magnus effect of the retor. A correction for this has been made on the basis of experiments made in a tidal channel; and the sense of rotation of the rotor was reversed in some of the later buoys in order to eliminate this possible source of error from the data. The telemetering itself is done in the following menner: the various sensing elements operate variable electric resistances, which produce variable audio frequencies which in turn are transmitted as a modulation of the radio frequencies. It is believed that adequate precautions were taken to prevent possible errors in the telemetering system. Messrs. Robert G. Walden and Donald Parsen, Jr. collaborated with me in the design and construction of the buoys. ### II. DISCUSSION OF DATA The original data from the buoys, including all cases where the buoys were not near to the shore of the island, is collected in Table I. Perhaps the most striking feature of this data is the considerable irregularity of the currents even during days while the wind is fairly steady. In his discussion of the current measurements which he made on board the "Armauer Hansen" in 1930, Ekman (1953) has called this irregular motion a kind of "macro-turbulence". As a result it is difficult to extract from the data definite statements about such things as: (i) the deviation of the surface current from the direction of the surface wind; and (ii) the ratio of current speed to the speed of the wind producing it. Ekman (1953) attempted to analyze his data for "Armauer Hansen" anchor station D in order to find the answer to these questions and to delineate the drift current spiral as a function of depth. Because of the macro-turbulence the results of his analysis were disappointingly indefinite. The purpose of such an analysis, of course, was to verify in the deep ocean the results of his theory (1905). The present buoy measurements are confined to the surface. They cover a longer period than those made on the "Armauer Hansen". It is therefore hopeful that certain features of drift currents may emerge more clearly from the confusion of the macre-turbulence. In order to appreciate how serious an obstacle the macro-turbulence is to a simple analysis of the data, an analysis can be made of all the wind vane readings obtained from buoys 2, 3, 4 and 8 (Table II). The current direction correction due to the Magnus effect on the rator has been applied. As can be seen, there is a very large scatter of the angle of deviation of the current from the wind; at one time or another every possible angle has occurred. On the average, however, there is a greater frequency of small angles of deviation showing that usually a current does not run against the wind. Horeover, there is a rather definite indication that currents to the right of the wind are more frequent than currents to the left of the wind. The mode of this frequency distribution lies at about 200 to the right of the wind, but it is obvious that this type of analysis of the data, including as it does all cases where the winds were rapidly varying, and all cases with pronounced irregular motions or possible inertial oscillations, gives at best a very diffuse and indefinite kind of answer to question (i). Similar objections can be raised to an attempt to make a gross average for determining the ratio of current to wind velocity. A more rational approach is to study individual cases where the wind was observed to be steady. Of course the currents are not exactly steady during the same time. The question arises as to how long a time interval to employ for the study of individual cases. Elman (1905) indicated that after the onset of a wind the average of the current for the first 2h hours (at 30°H) is a very close approximation to the theoretical current produced by a wind of infinite duration. Thus, in attempting to find answers to questions such as (i) and (ii) (above), 24-hour vectorial averages of wind and current are formed for days of steady wind. The concept of a steady wind is subjective. The data obtained from October 28-31 is a good sample of the relation between wind and current as it actually appears in nature (Figure 5). During October 28 the wind began to blow toward the north and by midnight was blowing about 23 knots; the currents, which were at first weak and variable, gradually weered to the right of the wind and grew stronger. Early on October 29 the wind itself veered until it blew toward NNS. The current veered, too, and executed a rotatory motion about a mean velocity about 42° to the right of the wind. During the afternoon of October 30, the wind dropped rapidly, and the current began to execute a rotatory (inertial) action about a zero mean velocity. By October 31, the winds were light and variable and the motions of the current were very irregular and confused. All evidence of a simple 24-hour inertial period was gons. During the winter of 1953-1954 the currents in the Northwestern Sargasso Sea are most often in a confused state such as depicted on October 31. It is only during days of steady strong winds, and immediately following them, that the theoretical features deduced by Ekman (1905) are clearly defined. Table III contains means of wind and current for all days during which the wind was steady. It was prepared for the purpose of examining the data from the 24-hour mean "case history" point of view. ### III. THE ANGLE BETWEEN THE WIND AND CURRENT Two independent ways of measuring the angle between wind and current are possible. The angle may be determined by comparing the mean wind direction at the observatory with direction of the current given by the magnetic compass on the buoy (Method 1). The angle may also be determined directly from the wind vane on the buoy, which measures the instantaneous angle between wind and buoy orientation (Method 2). Although this latter method is direct, it is likely to be more erratic due to gustiness of the wind - the sampling of wind direction from wind vane measurements on the buoy is naturally much poorer than the continuous records available at the observatory. By both methods it is seen that (in agreement with Ekman, 1905) the current is to the right of the wind, by an angle varying between 30° and 60°. During weak winds there is a greater spread of angles, and on the average the angle appears to be less than for strong winds. ### IV. THE RATIO OF CURRENT SPEED TO WIND SPEED The ratios of current speed to wind speed cited in Table III are about twice what would be expected from Ekman's study. When plotted on a logarithmic scale (Figure 6) these data give some indication that the ratio is not independent of wind speed. There is enough scatter in the data to prevent certainty concerning this point. Ekman (1905) discussed the case of a "quadratic" law of friction in the sea, and showed that in this case the current speed would be proportional to the three-halves power of the wind speed (rather than linearly proportional). The very limited data at hand suggests the reality of this law of friction, but of course does not prove it. The solid line in Figure 6 depicts the linear law; the dashed line, the three-halves law. ### V. THE PRESENCE OF INERTIAL OSCILLATIONS The design of the rig used on these buoys is not ideal for detecting or studying inertial oscillations because, as Fredholm (Ekman, 1905) showed, the inertial motions penetrate quickly to layers below the depth of frictional influence, and hence the inertial, or quasi-periodic, term in the vectorial difference of velocity is likely to diminish quickly if the deep drag is not much below the depth of frictional influence. Very clear and distinct rotatory currents with 24-hour period were observed on 14 separate days (Table IV); they were quickly damped out (whether by vertical diffusion of momentum, or horizontal dispersion of energy in the form of gravity waves is uncertain). The sense of rotation in every case was <u>cum</u> sole. Comparison of phase, to time of transit of the moon results in a complete scatter, thus ruling out the likelihood that these 24-hour periods are lunar tidal currents. There is also no relation to time of day, thus ruling out solar tides. ### REFERENCES - Ekman, V. W., 1905:
On the influence of the earth's rotation on ocean-currents. Arkiv för matematik, Astronomi o. Fysik, Bd. 2, No. 11: 1-52. - Ekman, V. W., 1953: Results of a cruise on board the "Armauer Hansen" in 1930 under the leadership of Bjørn Helland-Hansen. Studies on Ocean Currents. Pt. I. Text. Pt. II. Tables and Plates. Geofys. Publ., 19 (1): 106 + 122 pp. TABLE I MATA FOR ALL CUSAS ANGRE BOOTS MORE BEYOND ISLÂND INFLUENCE | 1953 | local
Time | dir. | <u></u> | Decy
D. | Trens.
Time | Cur. | tmot, | V) nd
Team | |-----------------|---------------|------|---------|-------------|----------------------|--------------------------|-------|---------------| | 195)
Fat. 27 | 0000 | 200 | 1 | • | OUG. | 020 | 0.27 | 330 | | TH 0003 | 0300 | 200 | ī | 3 3 3 3 3 3 | 0325 | 035 | 0.85 | 25.0 | | | 0600 | 200 | 1 | í | 0625 | 060 | 0.74 | 225 | | | 0900 | 160 | 6 | 3 | 0982 | 105 | 0.10 | 160 | | | 1200 | 180 | | Š | 1222 | 305 | 0.69 | 900 | | | 1500 | 180 | 5 | 3 | 1522 | 020 | 0.6 | 000 | | | 1800 | 190 | 3 | 3 | 1823 | 100 | 0.72 | 000
2160 | | | 2100 | 200 | 5 | 3 | 2123 | 195 | 0.69 | 130 | | Oct. 28 | 0000 | 200 | 7 | 3 | 0053 | 250 | 0.46 | 070 | | TH 0058 | 0300 | 180 | å | 5 | 0323 | 310 | 0.61 | 030 | | • | 0600 | 170 | | 3 3 3 4 | 0d23 | 340 | 0.7h | 000 | | | 0900 | 170 | 10 | 3 | 0923 | 360 | 0.54 | 320 | | | 1200 | 180 | 15 | Š | 1223 | SEC | - | 000 | | | | | | | 1243 | 000 | 0.74 | 000 | | | 1500 | 180 | 16 | 3 | 1522 | 000 | 0.50 | 350
165 | | | 1800 | 180 | 15 | | 1844 | 345 | 0.6 | 165 | | | 2100 | 170 | 19 | , | 2725 | 000 | 0.52 | 310
340 | | | | _ | | <u>.</u> | กร | 080 | 0.34 | 340 | | Oct. 29 | 0000 | 780 | ນຸ | 3 | 0055 | αo | 0.86 | 350 | | TH OLLS | 0300 | 200 | 25 | 3 | 0321 | 035 | 0.18 | 270 | | | | | | • | 0.00 | 080 | 0.75 | 250 | | | 0600 | 150 | 53 | ٤ | 0621 | 100 | 0.98 | 250 | | | | | | • | 0666 | | 0.30 | 350 | | | 0900 | 7:00 | 53 | 2 | 0969 | 202 | 0.98 | 270 | | | 1200 | 200 | 25 | • | 1222 | 050 | 0.69 | 030
290 | | | 1200 | 200 | ., | 2 | 1260 | 055 | 0.70 | 230 | | | 1500 | 200 | 26 | • | 1522 | 000 | 0.77 | 330
240 | | | | -00 | -0 | - 1 | 190 | 070 | 0.90 | 900 | | | 1800 | 200 | ಶ | 3 | 1522
1519
1822 | 055
070
030
090 | 2.00 | 900 | | | | | | į. | 1869 | 090 | 0.93 | 340 | | | 23,00 | 200 | 23 | į | 27.23 | 050
045 | 2.6 | 300 | | | | | | Ĺ | 2349 | OLS | 0.05 | 000 | | | | | | | | | | | | 1051 | Local
Time | dir. | <u> </u> | No. | frens. | dr. | knota | Arine
Almy | |----------------------------|---------------|------|----------|---------------|------------------------------|------------|----------------------|-------------------| | 1953
Oct. 30
TN 0234 | 0000 | 200 | 37 | 3 | 0055 | 105 | 0.53
0.58 | 260 | | TH 0236 | 0300 | 200 | 26 | į | 0622
0350
0350 | 055
060 | 0.83 | 320
300 | | | 0600 | 200 | 27 | 3 | 0622 | 070
960 | 0.90 | 300
355 | | | 0900 | 200 | 25 | į | 0660
0971
0931 | 660
340 | 1.01
0.62
0.51 | 260 | | | 1200 | 200 | 26 | 3 | 0931
1221
1252 | 035 | 0.83 | 330
330 | | | 1500 | 200 | 26 | 3 | 1521
1552
1821 | 080
090 | 0.82 | 01.0
355 | | | 1800 | 190 | 22 | >4>4>4>4>4>4 | 1821
1854 | 200
070 | 1.01 | مُلَا
ملا | | | 5790 | 270 | 5 | 3 | 2122
2123
2123 | 235
090 | 0.46
0.86 | 000 | | Oct. 31
TM 0317 | 9000 | 260 | 5 | 2 | 0050 | 290
050 | 0,80 | 270 | | | 0300 | 000 | 14 | 3 | 0320 | 150 | 0.60 | 000 | | | 0600 | 000 | 13 | ž | 0620
0620 | 125 | 0.80 | 000 | | | 0300 | 100 | 11 | Ž | 0920 | 220 | 0.37
1.12
0.70 | 900
335 | | | 1200 | 320 | 9 | 3 | 0920
1005
1220
1308 | 170 | 0.32 | 335
290
145 | | | 1500 | 270 | 3 | j | 1520 | 010 | 0.75 | 010 | | | 1800 | 220 | 7 | | 1520
1610
1820
1912 | 035 | 0.98 | 315
110 | | | 2100 | 550 | 9 | 3 | 2213
2313 | 105 | 0.70 | 000
000 | | Nov. 1
TN 0357 | 0000 | 320 | 5 | } | 0020 | 105 | 0.77 | 000
215 | | 2.1 0351 | 0300 | 320 | 7 | 3 | 0320
0618 | 000 | 0.77 | 055
060 | | | 0600 | 280 | 7 | į | 0620
0718 | 070 | 0.67 | 2145 | | | 0900 | 270 | 11 | 3 | 0920
1018 | 105 | 0.30 | 000
270 | | | 1200 | 330 | 12 | 3 | 1220
1317 | 070 | 0.90 | 350
000 | | | 1500 | 723 | 12 | 3 | 1520
1518 | 125 | 0.74 | 33.5 | | | 1500 | 340 | 12 | 3 | 1850 | 150 | 0.75 | 270
000 | | | \$100 | 350 | 7 | ************* | 2119 | 110 | 0.88 | 290
ULO | | | Invel
Time | dr. | ed
aph | Decry
No , | Trans. | Cur
dir. | mets | Wind
Vano | |--------------------------|---------------|-----|-----------|---------------|----------------------|-------------|-----------------------------|-------------------| | 1951
307 2
10 3437 | 0000 | 340 | 3 | 3 | 0120 | 190 | 0.1/2
2.08 | 300
035 | | | 0300 | 340 | 5 | ž | 0319 | 180 | 0.67 | 290 | | | 0600 | 000 | 6 | 2 | 0629
0629
0720 | 250 | 2. M
0.77
0.30 | 060
045
270 | | | 0900 | 070 | 5 | 2 | 0920
1083 | 230 | 0.88 | 26U | | | 1200 | OHO | 6 | 3 | 1220 | 215 | 0.26 | 000 | | | 1500 | 000 | 7 | ž | 1372
1520
1623 | 180 | 0.61 | 180
000
090 | | | 1800 | Ob0 | 5 | ٠ | 1820 | 205 | 0.64 | 900 | | | 2100 | - | - | 34343434 | 1923
2119
222k | 260 | 0.67 | 220 | | Nov. 3 | 0000 | OLE | 8 | 1 | 0019
0124 | 215 | 0.7k
0.37 | 290
320 | | 211 4,221 | 0300 | 110 | 3 | | 0319 | 23.0 | 0.51 | 300 | | | 0600 | 969 | 5 | 3 | 0624
0629
0724 | 215 | 0.7k
0.61
0.77 | 280
315
120 | | | 0900 | 065 | 11 | 3 | 0920 | 210 | 0.67 | 000
350 | | | 1200 | OLS | 10 | 2 | 1272 | 235 | 0.67 | 320 | | | 1500 | OLS | | 3 | 1325
1522
1626 | ะมัร | 0.13
0.30
0.32 | 340
340 | | | 1800 | - | - | 3 | 1820 | 130 | 0.74 | 900 | | | 21.00 | 030 | 5 | 3 | 2123
2226 | \$50 | 0.54 | 310
310 | | Hov. & | 0000 | oks | 3 | 2 | 0020
0126 | 260 | 0.62 | 250
110 | | | 0300 | 050 | 2 | 3 | 0320 | 350 | 0.5 | 260 | | | 0600 | OLS | 3 | 3 | 0626
0726 | 330 | 0.53 | 180
325 | | | 6900 | œ3 | 5 | 3 | 0926
1027 | 350 | 0.56 | 130 | | | 1200 | 070 | 5 | į | 1228 | 105 | 0.56 | 060
325 | | | 1507 | 530 | 3 | į | 1500 | 330 | 0.5 | 270
270 | | | 1800 | 005 | 3 | į | 1831 | 330 | 0.61 | 210
225 | | | \$100 | 0.5 | k | 3 | 233 | 330 | 0.13 | 110 | | | | | | | | | | | | | Local | M. | <u>=4_</u> | Baoy
No. | Trans. | Cur. | rent
kaota | Wind
Pens | |---------------------------|--------------|-----|------------|------------------|------------------------|------|----------------------|-------------------| | 1953 | 4.00 | | | | | | | | | 1953
Nov. 5
TH 0640 | 0000 | - | celm | þ | 0035 | 025 | 0.42 | 090 | | AM OOMO | 0300 | 010 | 5 | うらうようろうようようようようと | 01.36
0300
04.36 | 050 | 0.11
0.58
0.56 | 020
060
305 | | | 0600
0900 | 015 | 3 | 3 | 0967 | 590 | 0.62 | 160 | | | 2900 | 032 | 2 | 3 | 0961 | 210 | 0.69 | 215 | | | 1200 | 053 | 3 | 3 | 1213 | 320 | 0.46 | 150 | | | 150C | 075 | k | 2 | 1350
1545
1654 | 320 | 0.69 | 280
085
000 | | | 1500 | 075 | 5 | ş | 1865
1959
2146 | 330 | 0.62 | 135 | | | 2100 | 105 | 8 | • | 2775 | 010 | 0.61 | 280 | | | • 2000 | 20, | ٠ | Á | 2303 | - | 0.54 | 200 | | STANDARD STANDARD | | | | | | | | | | Nov. 6 | 0000 | 110 | 7 | ۶ | 0205 | 000 | 0.72 | 000 | | 1H 0127 | 0300 | 122 | 11 | 3 | 03L7 | 300 | 0.19 | 310 | | | _ | | | Ĭ. | 0505
0617 | | 0.90 | 000 | | | 0600 | 120 | 5 | 3 | 0647 | 340 | 0.77 | 330 | | | 0900 | 122 | 12 | 4 | 0805
0946
1109 | 010 | 0.34
0.72
0.14 | 35-0 | | | 0700 | | 12 | í. | 1100 | 010 | 0.72 | ملا | | | 1200 | 120 | 14 | 3 | 1246 | 060 | 0.75 | <u> </u> | | | | | | i, | 31r03 | - | 0.70 | 3140 | | | 1500 | 135 | 15 | 3 | 1547 | 340 | 0.48 | 280 | | | 1800 | 135 | 13 | シルラルラルラルラルラルラルラル | 1710 | 320 | 0.67 | 350 | | | 2100 | | 12 | , i | 2013
2013 | 310 | 0.9% | 100 | | | 2100 | 135 | 12 | 3 | 2317 | - | 0.72 | 300
355 | | HOV. 7 | 9000 | 140 | • | 2 | 001:6
0217 | 000 | 0.78 | 330 | | IN OULS | 0300 | 150 | 11 | ٤ | C316
O519 | 020 | 0.53 | 290
350 | | | 0600 | 180 | - | 3 | 0616
0622 | 030 | 0.77 | 290 | | | 0900 | 180 | - | うねうねうねうようとうこと | 0946 | 010 | 0.85
0.83
0.80 | 075
325
005 | | | 1200 | 550 | - | į | 1123
1246
1424 | 350 | 0.59 | 310
015 | | | 1500 | 195 | - | 3 | 125 | 035 | 0.51 | 31 ₀ 0 | | | 1800 | 123 | 7 | 3 | 1845 | 050 | 0.74 | 350 | | | 2100 | 250 | ć | ž | 2333 | 290 | 0.83 | 000 | | | | | | | | | | | | 1041 | iocal
Time | dir. | | No. | Trans.
Time | dir, | | Viana
Vana | Local | . <u>w</u> | _ | Buoy | Trans. | ~ | rest_ | W1mf | |---|--|---|---|--|---|---|--|--
--|---|---|--|--|--|---|---| | 195)
Nov. 8
Tr. 0905 | 0000
7300
0600
0900
1200
1500
1800
2100 | 225
265
050
070
050
050 | ealm
ealm
2
4
5
6 | 3 | 0015
7315
0615
0914
1214
1814
7114 | 160
170
215
210
230
250
250 | 0.66
0.70
0.18
0.71
0.82
0.69
0.75 | 200
316
316
280
270
270 | 1953
Bec. 2 0000
TH OLAS 0300
0500
0500
1200 | 270
275
280
285
285
295 | 12
14
22
20
20
18 | 2
2
2
2
2
2
2
2 | 0140
0139
0737
1035
1333
1631 | 105
100
070
115
055
100 | 0.80
0.61
0.91
0.93
0.48
0.91 | 330
295
350
350
350
350
350
350 | | Nov. 9
TN 0958 | 0000
0300
0600
0900
1200
1500
1800
2100 | 01.5
060
080
078
120
070
085
080 | 6 6 7 7 7 3 6 6 | 3 | 0013
0913
0612
0912
1912
1811
2111 | 2160
225
250
230
280
305
220 | 0.72
0.64
0.54
0.67
0.74
0.13 | 290
290
320

260
210
300 | 3,000
21,00
21,00
31,00
0,00
0,00
0,00
1,00
1,00
1,00 | 320
330
330
330
330
330
330
340 | 15
14
15
16
16
15
16
12 | 2 | 0126
(h2i
0722
1022
1322
1320 | 115
120
095
116
180
215
175
1160 | 0.85
0.95
0.85
0.86
0.99
0.72
0.82 | 200
200
200
200
200
200
200
200
200
200 | | Nov. 10
TH 1053 | 0000
0300
0600
0900
1200
1500
1800
2100 | 096
098
090
095
090
090 | S
3
2
3
1
enim | 3 | 060
090
090
120
1539
1839
2138 | 226
-
125
000
050
060
035
000 | 0.59
0.64
0.27
0.98
0.64
0.96
0.69 | 010
270
276
276
276
276 | 2000
2000
2000
2000
2000
2000
2000
1200
1500 | 000
005
005
025
030
055
075 | 7
8
6
7
7
8
6 | 2 2 | 010
010
010 | 265
260
350 | 0.83
0.75 | 350 210 | | nev. 11
TH 11kT | 0000
0300
0600
0900
1200 | 210
210
220
220 | 081m
3
3
7
10 | ; | 0037
0337
0637
1238 | 030
030
105
036 | 0.18
0.72
0.64
0.62 | 350
300
360
290 | 21.00
 | 095
095
095
100
120 | 65442 | : | | : | : | : | | 30v. 25 | 0000
0300
0600
0900
1200
1500
1800 | 110
110
110
150
175
175
180
180 | 6
7
7
8
11
10
8 | 2 | 001/8
031/8
061/8
091/5
123/6
153/4
1830
2128 | 95
95
95
95
95
95
95
95
95
95
95
95 | 0.72
0.85
0.37
0.77
0.67
0.80
0.37 | 26.
30.
305
295
295
290
295
295
295
295
295
295
295
295
295
295 | 1500
1800
21.00
21.00
21.00
21.00
21.00
21.00
21.00
21.00
21.00 | 080
.80
080 | 3 2 | • | 1528
1828
2128
0028
0328 | 95
320
135
135
230 | 0.06 | 305
305
220 | | 20v. 26
TH 0027 | 2100
0000
0300
0600
0900
1200
1500 | 185
185
190
190
185
185 | 15
11
14
11
15
18 | 2 - 2 2 2 2 2 | 0025
0625
1216
151h | 305
005
060
080 | 0.70
0.62
0.59
0.69
0.60 |
030

020

350
350 | 0900
0900
1200
1500
2100 | 060
060
075
080 | 45.0656 | 8 8 8 8 | 0628
0929
1159
1659
1159
2127 | 230
330
030
030
080
290
305 | 0.43
0.69
0.36
0.56
0.60
0.12 | 255
260
250
250
250
250
250
250
250 | | | 2100 | 195 | 23 | 2 | 2103 | 015 | 0.37 | 340 | | | | | | | | | | | Local
Time | atr. | ind . | Buoy
Vo. | Trens. | o
air. | errent | Wind | Lega | | <u>1 mai</u> | Buoy | Trans. | _6 | rrest_ | | | 1953
Nov. 27
TH 0112 | Local
71m0
0000
0300
0600
0900
1200
1500
1800
2100 | 210
260
275
275
275
275
275
275 | 12:
11:
11:
11:
10:
8:
0:
0:lis | Buoy No. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | Trens. Time 0007 0305 0602 0900 1158 1156 1753 2090 | 010
080
080
090
115
116
190
215
255 | 0.72
0.70
0.82
0.70
0.82
0.70
0.80
0.37 | Wind
Vane
000
355
355
300
235
225
210 | Leval
1953
Dec. 7 0000
900 0900
1200
1200
1200
2100 | 255
225
226
226 | 1md
mph
5
10
6
8
12
12
12 | Baoy 30.
8 8 8 8 8 8 8 8 8 8 | Trans. Time 0027 0327 0627 0926 1224 1526 1825 2125 | 000
005
350
005
005
000
130
210
230 | 0.00
0.59
0.69
0.13
0.13
0.00
0.12 | Wind
Vane
335
000
350
335
335
230
210
190 | | 1953
Nov. 27
19 00.12
Nov. 28
191 00.5h | 71mm
0000
0300
0600
0900
1200
1500
1800 | 200
260
295
295
295
295
295 | 12
11
14
14
10
8 | 10.
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | 71mm
0305
0602
0900
1158
1166
1753 | 010
080
090
155
15
190
215 | 0.72
0.70
0.83
0.70
0.82
0.70
0.80
0.77
0.54
0.47
0.48 | 7000
000
350
350
350
350
350
350
350
350 | 1953
Die. 7 0000
TH 0847 0900
0600
1200
1500 | 250
220
220
225
230
246
260
260
260
260
260
260
260
260
260
26 | 5
10
6
8
12
12 | 30.
8
8
8
8
8
8
8 | 71==
0027
0327
0627
0926
1224
1526
1825 | 000
005
750
005
005
000
130
210 | 0.00
0.kg
0.59
0.kg
0.kg
0.kg
0.kg
0.kg | 7450
000
360
375
315
230
210 | | % CQ12 | 0000
0300
0600
1200
1500
1800
2100
0000
0600
0600
0900
1200
1200 | 200 200 200 200 200 200 200 200 200 200 | 12
11
11,
14,
10
8
3
mls. | 10.
222222222222222222222222222222222222 | 0007
0305
0602
0900
1158
1156
1153
2050
0812
1110
0812
1110
1137
1175 | 000
000
115
116
125
255
255
055
070
070
090 | 0.72
0.70
0.83
0.37
0.80
0.70
0.80
0.77
0.58
0.77
0.59
0.75
0.59 | ************************************** | 1953 0000 1200 1200 1200 1200 1200 1200 120 | 260 1260 1250 1250 1260 1260 1260 1250 1250 1260 1260 1260 1260 1250 1250 1250 1250 1250 1250 1250 125 | 2
2
2
3
6
6
8
12
12
12
3
2
2
6 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 0027
0327
0327
0526
1224
1525
1225
0025
0325
0525
0525
1525
1525
1525 | 230
235
236
235
236
235
236
235
236
235
236
236
236
236 | 0.00
0.59
0.59
0.13
0.00
0.13
0.00
0.12 | 7600
300
300
300
300
300
300
210
210
225
110
225
110
205
000
500
500
500
500
500
500
500
50 | | Nov. 26 | 0000
0500
0500
1200
1500
2100
0000
0500
05 | 200 200 200 200 200 200 200 200 200 200 | 12 11 11 10 8 3 calls calls 20 7 7 6 8 2 20 7 7 6 7 | 10. 222222222222222222222222222222222222 | 0007
0305
0602
0500
1158
1153
1253
2050
0812
1115
2033
1137
2033
0828
0828
0828
0828
11122
1122
1122 | 000
000
000
000
115
1190
215
255
255
255
255
255
255
255
255
255 | 0.72
0.70
0.83
0.89
0.80
0.80
0.77
0.54
0.77
0.78
0.78
0.78
0.78
0.78
0.69
0.76
0.69
0.76
0.69 | | 1953
Date 7 0000
900 0600
1200
1500
1800
1800
1800
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1900
1 | 150
150
180
180
180
225
225
260
260
260
260
260
260
100
100
125
125
130
130
130
130
130
130
130
130
130
130 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 30.
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | Time 0027 0027 0027 0027 0026 1224 1525 1525 0025 0025 0025 1225 1825 2125 0025 0025 1225 1825 2125 | 81.F.
000
005
005
080
0130
210
210
220
220
220
220
220
22 |
0.00
0.159
0.159
0.153
0.153
0.150
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0.156
0 | 155
200
150
150
150
150
150
155
210
150
255
265
265
265
265
265
265
265
265
265 | | Nov. 28 191 00.5h | 0000 0500 1200 1500 1500 1500 1500 1500 | 200 200 200 200 200 200 200 200 200 200 | 12 11 11 11 10 8 3 3 cala 10 10 11 15 6 6 7 h cala 10 10 11 15 6 6 2h | 10. 222222222222222222222222222222222222 | 0007
0008
0008
0008
0009
0009
1156
1153
2050
0012
1145
2033
0021
1177
2016 | 000
000
000
000
000
000
000
000
000
00 | 0.75
0.75
0.83
0.80
0.80
0.80
0.80
0.77
0.54
0.77
0.54
0.77
0.57
0.75
0.75
0.75
0.75
0.77
0.88 | ************************************** | 1953 Time | 150
150
180
180
180
225
225
260
260
260
260
260
260
260
260
260
260 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 80. 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 71mm 0027 0027 0027 0027 0027 0027 0027 00 | 000 000 000 000 000 000 000 000 000 00 | 0.00
0.59
0.103
0.103
0.103
0.103
0.103
0.103
0.104
0.103
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.104
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0. | 7000
7000
7000
7000
7000
7000
7000
700 | | 2020 | Local
Time | dir. mph | Bury
lo. | frans.
Time | Current
dir. kmets | Vind
Vino | | Local
Time | dir. aph | No. | Truns.
Time | Current
dir. knots | YEL mail
Techno | |--|--
--|---|---|---|--|---|---|--|---|--|--|---| | 195)
Dec. 12
TH 1308 | 0000
0300
0600
0900
1200
1500
1800
2100 | 090 12
100 10
110 10
120 11
150 11
180 12
200 11
220 12 | 8 | 0021
0321
0621
0921
1221
1521
1822
2121 | 230 0.15
190 0.62
195 0.19
190 0.31
215 0.12
205 0.17
120 0.32
100 0.40 | 010
030
030
100
055
080
190
225 | 1753
Dec. 22
TH 2226 | 1200
0500
0602
0900
1200
1500
1800
2100 | 210 22
210 22
210 22
210 19
210 22
210 19
210 19
210 15 | 7
7
7
7
7
7 | 0036
0336
0636
0935
1235
1535
1835
2135 | 065 0.64
066 0.70
065 0.67
095 0.15
085 0.69
075 0.64
095 0.69
110 0.25 | : | | Dec. 13
TH 1356 | 0000
0300
0600
0900
1200
1500
1800
2100 | 220 15
225 15
225 16
230 13
240 17
240 11
220 11 | 8 8 8 | 0021
0321
0661
0971
1221
1521
1821
1821 | 090 0.16
180 0.16
170 0.56
120 0.07
125 0.10
120 0.60
180 0.81
185 0.07 | 215
185
200
235
240
235
180
135 | Dec. 23
28 2303 | 0000
0300
0600
0900
1200
1500
1800
2100 | 230 9
215 6
 | 7
7
7
7
7 | 0035
0335
0635
0935
1235
1234
2134 | 090 0.36
110 0.73
125 0.60
135 0.52
165 0.21
105 2.13 | :
:
:
:
: | | Due. 1h
7H 1MG | 0000
0000
0600
0900
1200
1500
1800
2100 | 220 13
220 12
210 13
220 13
220
15
210 14
210 18 | 8 | 0021
0321
0421
0718
1218
1521
1818
2117 | 199 0.76
120 0.73
170 0.77
160 0.59
160 0.90
195 0.70
169 0.29
185 0.87 | 115
160
160
175
1160
1760
170 | Dec. 2k
mi 2368 | 0000
0300
0600
0900
1200
1500
1800
2100 | 260 17
260 20
240 21
260 23
270 12
030 8
080 11
000 10 | 7 | 003h
033h
063h
093h
123h
123h
123h
123h | 230 0.52
110 0.62
120 0.13
095 0.70
130 0.70
135 0.70
365 0.3k
275 0.18 | : | | 100. 15
ТН 1536 | 9000
0300
0600
0900
1200
1500
1800
2100 | 210 15
210 17
210 16
220 20
210 23
270 10
330 12
350 16 | 8 8 8 | 0017
0317
0617
0727 | 250 0 60
280 6.10
155 0.07
150 - | 095
035
170
220 | Dac. 25 | 0000
0300
0600
0900
1200
1500
1800
2100 | 000 13
020 10
030 9
065 5
065 3
120 3
180 7
210 12 | 7
7
7
7
7
7
7 | 00%
03%
063%
09%
12%
15%
23%
21% | 250 0.73
285 0.70
270 0.66
300 0.17
305 0.43
065 0.57
065 0.53 | | | Dec. 16
TH 1630 | 0000
0300
0600
0900
1200
1500
1800
2100 | 359 12
365 7
005 7
045 3
030 3
350 4
000 6
000 5 | 7 7 7 | 1538
1838
2138 | 500 -
310 0.53
210 0.62 | : | 204. 2б
2N 0029 | 0300
0600
0900
1200
1500 | 216 22
210 20
210 22
250 15
320 12
320 11 | 7
7
7
7
7
7 | 033k
033k
063k
0932
1232
1532 | 065 0.11
130 0.20
675 0.71
105 0.71
175 0.77 | : | | | | | | | | | | | | | | | | | 1953 | Iceal
Time | Wind
etr. app | Decy
No. | Trans. | Current
dir. knots | Vind
Vine | 1953 | Local
Time | Wind
dir. aph | Decry
No. | Trum,
Time | Current
dir. knots | Vind
Turn | | 1953
Doc. 17
TM 1727 | | #1mt
#1r. mph
330 3
300 5
280 10
300 12
320 11
357 25
330 15
330 15 | 7 7 7 7 7 7 | | Correct dir. basts O75 0.k3 175 0.07 185 0.62 170 0.52 185 2.60 270 0.55 295 0.17 150 0.66 | | 1953
Inc. 30
78 0313 | | | 6
6
6
6 | 71me
-
13h6
1527
1666
1827 | dir. kaote | 7800
280
285
225 | | 1953
Dec. 17
TM 1727
Dec. 18
TM 1827 | 75300
0000
0300
0600
0900
1200
1500 | 330 3
300 5
280 10
300 12
320 14
350 25
330 15 | 7
7
7
7
7
7 | 71me
0036
0336
0636
0938
1238
1537
1837 | 075 0.43
175 0.67
125 0.62
170 0.52
185 2.60
270 0.55
270 0.55 | Year | 195)
The 2 30
TH 0313
Dec. 31
TH 0359 | 0000
0300
0600
0700
1200
1500
1800
21,00 | 250 11a
270 9
270 9
270 7
270 7
270 7
250 6
150 6 | | 7386
1527
166
1527
166
2127
2246
0027
0146
0327
0446 | 115 0.66 130 0.46 150 0.71 155 0.72 155 0.71 255 0.71 255 0.71 255 0.72 255 0.72 | 7800
280
280
285
225
180
175
175 | | Dec. 18 TM 1827 Dec. 19 TM 1928 | 0000 0000 0000 0000 0000 0000 0000 0000 0000 | 330 3
330 3
330 5
280 10
330 12
320 12
320 13
320 17
320 14
320 14
320 16
320 18
320 12
320 12
320 12
320 13
320 18
320 18 | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 0036
0036
0036
0036
0038
0038
1218
1237
2237
0037
0037
0037
0037
0037
0037
0 | ### Description Control | | 78 0313 | 7186
0000
0300
0600
0600
1200
1500
1800
2100 | 250 11,
270 9
270 8
260 7
270 9
270 7
250 6
150 6 | - Ho 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 1346
1527
166
1527
1626
1827
1916
2127
2246 | 115 0.66
110 0.46
110 0.46
150 0.67
146 0.85
275 0.71
255 0.59
255 0.71 | 7000
280
280
225
225
180
175
175 | | Dec. 18 78 1827 | 0000 0000 0000 0000 0000 1200 1200 1200 | 330 3
330 5
280 10
300 5
280 10
300 12
320 12
320 13
320 17
320 14
320 14
320 16
320 18
320 21
320 21
320 21
320 18
320 21
320 18
320 18
3 | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 71.00
00.00
00.00
00.00
00.00
00.00
00.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00 | ### Description | | 78 0313 | 1300
0300
0300
0300
1200
1200
1200
2200
03.70
0600
0900
1200
1200
1500 | 250 11a 270 9 270 8 260 7 7 270 7 250 6 12 250 12 250 22 250 21 | #6.
 | 7130
- 1346
1527
1666
1827
1946
2127
2236
0927
0146
0927
0146
0927
0146
1728
1728
1728
1728
1728
1728
1728
1728 | dr. hate | 280
280
285
225
225
130
175
230
200
355
355
300
240 | STATE OF THE PARTY | | | | | | | | | Local
Time | dir. | | No. | Trans. | | kmrta | Wind
Vanc | |------------------------------------|---------------|----------------------------|--------|--|--|--|-----------------------------------|------------------------------|-------------------|-----------------------|-------------|---------------------------------|--------------------------|--------------------------------------|--| | | | | | | | | 1954
Jan. 8
20 1105 | 0000 | 22 | 20 | 6 | 0002 | 085
100 | 0.86
0.11 | 33 8
000 | | | | | | | | | IN 17643 | 0300 | 320 | 19 | 6 | 0342
0600 | 110 | 0. L3
0.88 | 900
1U3 | | | | | | | | | | 0600
0900 | 330
330 | 20
22 | 6 | 09 | 15h
15h
160 | 0.56 | 283
275 | | | Local
Time | dir. mph | No. | Trans. | Current | Vind
Teni | | 1200
1500 | 330 | 33 | 6 | 1100
1211 | 131 | 0.10
0.7k | 000 | | 1954
Jan. 2 | 0000 | 326 13 | 6 | 00,70 | 105 0.63 | 295 | | 1500 | 330 | 20 | 6 | 1516
1700
1865 | 103
155
158 | 0.77 | 000
000
338 | | TH OSLO | 0300 | 330 13 | 6 | 0330 | 120 0.11
095 0.68
120 0.00 | 295
365
365
365
365
365
365
365
365
365
36 | | 2100 | 335
335 | 20 | 6 | 5000 | 160 | 9.07
9.27 | 000 | | | 0600 | 330 13 | 6 | 0651
0630
0751 | 120 0.00
120 0.59
120 0.63 | ,225
325 | | | | | | | | | | | | 0900 | 360 11 | 6 | 0932
1053 | 125 0.67 | 295
355 | Jan. 9
TH 1154 | 0000 | 330
330 | 19
13 | 6 | 0500 | 270 | - | 000 | | | 1200 | 340 9 | 6 | 1232
1353 | 160 0.70
110 0.21 | 030
295 | | 0600
0900 | 330
345
000 | 15
10 | 6 | 06 <u>42</u>
1100 | 168 | 0.56 | 357 | | | 1500 | 030 7 | 6 | 1532
1653 | 165 0.2h
175 1.06 | 025 | | 3200
1500 | 000
000 | 13
7 | 6 | 121/2
11/00
151/8
1700 | \$02
\$11 | 0.13
0.56
0.63
0.65
0.56 | 357
338
000 | | | 1800
2100 |
050 3
- esim | 6 | 1832
1953
2132 | 205 0.70
185 0.63
195 0.70
115 0.77 | 000
040
045
125 | | 1800 | 010 | 5 | 6 | 1700 | 230
168
239 | 0.27 | - | | | 2100 | - 0.1 | 6 | 2253 | 115 0.17 | 125 | | 23,00 | = | oals. | 6 | 2128 | 997 | 0.56 | 22k
005 | | Jan. 3 | 0000 | - celm | 6 | 0032 | 205 0.63 | 125 | Jan. 10 | 0000 | - | cela | • | - | - | - | - | | 224 0636 | 0300 | - calm | 6 | 0332 | 165 0.15
265 0.36 | 170
115 | TH 1243 | 0300
0600
0900 | 225 | 6 | : | : | - | : | - | | | 3600
0900 | 060 1
120 3 | 6 | 0632
0632 | 220 0.60
210 0.81
270 0.71 | 100
110
055 | | 1200 | 550
552 | 7
10 | 6 | 12k9 | 330 | _ | 356
356
000 | | | 1200 | 120 3
180 12 | 6 | 0934
1054
1234
1356 | 300 U.05
205 0.67 | 052 | | 1500 | 190 | 12 | 6 | 1100
1518
1700 | 330
329
350
358 | 0.95
0.69
0.95 | 900 | | | 1500 | 300 h | 6 | 1356
1534 | 295 0.11 | 035 | | 2300
2300 | 190
185 | 1h
17 | - | : | : | : | : | | | 1800 | 210 20 | 6 | 1534
1666
1834
1956
2734
2256 | 305 0.66
045 0.59 | 985
355
365
915 | | | | | | | | | | | | 2700 | 200 19 | 6 | 1956
27.34 | 360 0.63
320 0.70 | 955
015 | Jan. 11
TH 1333 | 0600
0333
0000 | 185 |)店
20
21 | : | - | = | - | - | | | | | 6 | | 025 0.85 | 185 | • | 0900 | 225
225 | 17 | 6 | 0957
1100 | 949
005 | 1.62 | ية.
000 | | Jen. h
TH 0732 | 0000 | 210 19 | 6 | 003k
0156 | 025 0.59
030 0.14 | 355
365 | | 1200
1900 | 230 | 20
21 | 6 | 1413 | 357
008 | 0.15 | 300 | | 0.32 | 9350 | E3 55 | 6 | 0334 | 350 0.35
005 0.77 | 355
353
010 | | 1800 | 200 | 16 | 6 | 1700 | 008 | 0.83 | - | | | 9639 | 220 19 | 6 | 033k
0466
063k | 960 0.67
055 0.77 | 060 | | 2100 | 200 | 16 | | • | | - | • | | | 0500 | 210 20 | 6 | 1056 | 025 0.63 | 001
358
356 | | | | | | | | | | | | 1200
1500 | 210 19 | 6 | 1236
1356
1556 | 620 0.77
030 0.08
005 1.68 | 2002 | Jan. 12
TH 1125 | 0000
0300 | 190
190 | 21 | - | 03k2 | 026 | : | οūο | | | 1800 | 2k0 7 | 6 | 1836
1956 | 102 1.67 | 356 | • | 0600 | 210 | 26 | 6 | 0342
0500
0642 | 927
927 | 0.77 | 139 | | | 2100 | 000 9 | 6 | 2136 | 110 0.08
212 - | 097 | | 0900 | 215 | 26 | 6 | 0800
0953
1141 | ᅄ | 0.33 | 003
352 | | | | | | | | | | 1200 | 270 | 8 | 6 | 1253 | 103 | 0.83 | 003
352
008
358
301
150 | | | | | | | | | | 1500
1800 | 250
215 | 10
8 | 6 | 1111
1953
2015 | 060
078
103 | 0,88 | 150 | | | | | | | | | | 2100 | 270 | ě | 6 | 2153 | 121 | | 353
007 | | | Local | Wind | S-Loy | Trans. | Current | W1.md | | | | | | | | | | | 125 | 7 <u>0 =</u> | dir, sph | No. | Time | dr. kesta | YASS | Jan. 13
TH 1519 | 0000
0300 | 300
300 | 12 | 6 | 0353 | 125 | 0.49 | 56° | | 395 <u>1.</u>
302. 5
TH 0828 | 0000 | 020 8 | 6 | 0036 | 301 0.35
212 0.20
147 1.40 | 059 | | 0600 | 310 | 14 | 6
5
6 | 0515
0653
0835
0953 | 152
121
010 | 1.10
0.84 | 566 | | | 0600 | 060 5 | 6 | 0336
0636 | 175 0.35
298 0.85 | 000 | | 0900 | 335 | 21 | 6 | 0953
1015 | 5 GP | 0.70 | 200
098
221 | | | 0900 | 038 l ₄ | 6 | 0756 | 297 0.77
295 0.67 | 062 | | | | | | | | | | | | 1200 | 085 5 | 6 | 0960
1056
1260 | 212 0.63 | 105
354
048 | Jan. 26
TH 0107 | 0300 | 355
030 | 10 | - | : | : | : | : | | | 1500 | 063 5 | 6 | 1356
1540 | 212 0.00
339 0.66 | 059 | | 0600
0900 | 030 | 7 | : | • | : | - | : | | | 1800
2100 | 090 10 | 6
6 | 1700
184?
2142 | 264 0.69
264 0.13
270 0.41 | 012
012 | | 1200
1500 | 070 | 6 | , | 1215
1515
1815 | 293 | 0.56 | 026
332 | | | | 120 14 | | | 210 0.81 | 020 | | 1800
2100 | 090 | h | 9 | \$172 | 037
017 | | 350
350
305 | | Jan. 6
TH 0923 | 0000 | 170 17 | 6 | 0200 | 270 0.11
297 0.21 | 0.27 | Jan. 27 | 0000 | 090 | 5 | , | 00k7 | 328 | 0,20 | 312 | | | 0300 | 180 19 | 6 | 0342
0500 | 311 - | 900
356
358
018 | 18 0151 | 0300 | 090
100 | la
la | 9 | 0367 | 063 | 0.52 | 286 | | | 0600 | 185 19 | 6 | 0642 | 321 0.62
330 0.59
005 0.74
201 0.83 | 358
018 | | 0900
1230 | 105
100 | 5 | 9 9 | 0%5
1216 | n).c | 0 66 | 287
311
260
328 | | | 0900 | 220 14 | 6 | 0942
1100
1242 | 330 0.59
005 0.74
201 0.81 | 352
000 | | 3500
1800 | 090 | 3 | . 9 | 1845
1845 | 905
334
350
934 | 0.34 | 328
336
348 | | | 1200 | 225 9
260 6 | 6 | 7745
7245 | 032 0.56
076 0.27
076 0.66 | 020
338 | | 23.00 | | eal | , , | 27/12 | 034 | 1.5 | 348 | | | 1800 | 260 3 | 6 | 1700 | 060 0.62 | مرر
مرز | | Local | | ri.mt | Buty | frens. | | urrent_ | Wind | | | 2100 | 225 14 | 6 | 5000 | 0.60 | - | 1994 | Time | सङ | i epa | No, | Time | सः | . knots | Tane | | 120 L | | 200 2 | | | | | 19 <u>9.</u>
Feb. 8
TK 1221 | 0000 | 280 | 10 | : | : | : | : | - | | Jan. 7
78 1015 | 0300
0600 | 220 24
215 26
210 20 | - | : | : : | = | | 0600
0900 | | : | - | : | : | : | : | | | 0900 | 200 16 | 6 | 1100 | 153
121 0.63 | 000
338 | | 1200
1500
1800 | 150
140
180 | 7
14
17 | 14 | 1637 | 307
(01
359 | 0,72 | 900
200
304 | | | 1200 | 30% 15 | 6 | 12 <u>1</u> 2 | 119 0.21
152 - | 338 | | 2100 | 225 | 21 ₄ | 14 | 1937
2043 | 359 | 0.15 | 37.5 | | | 1500 | 305 15
315 16
315 20 | 6 | 1542 | 130 - | 338 | | | | | | | | | | | | 1800 | 317 10 | | | | | Peb. 🦻 | *** | | | | | | | | | | 1800
2100 | 315 20 | 6
5 | 211,2
2300 | 092 -
066 0.27 | 000 | TH 1315 | | 265
250 | 26
50 | - | : | : | : | : | | | 1800 | ns 20 | | | | | m isis | 0300
0600
0600 | 265
270
265 | 8 S 3 R | - | _ | 150 | : | ര് | | | 1800 | 315 20 | | | | | n ini | 0300
0600
nenn
1200 | 265
265
270 | 90
13
30
18 | - | _ | 150 | : | 270
280 | | | 1800 | 315 20 | | | | | TH 1915 | 0300
0600
0900 | 562
550
550 | \$0
18
18
20 | | 1010
1312
1312 | - | : | 00J
270 | ### NOTES ON TABLE I Buoys 8, 9, and 14 were all rigged as shown in Figure 2; buoys 6 and 7 were rigged with the deep drag on a bridle directly beneath the can; buoys 2, 3, and 4 were rigged the same as Figure 2, but the deep drag was replaced by another rotor similar to that at the surface. The depth of the deep drag, of the surface rotor, and the Magnus correction applied in determining current direction from the rough data, were as follows: | Buoy No. | Depth of
deep drag
(or rotor)
(feet) | Depth of
surface
rotor
(feet) | Current
direction
correction | |------------|---|--|------------------------------------| | 2 | 150 | 8 | -10° | | 3 | 200 | 8 | -10°
-10° | | 4 | 150 | 8 | - <u>10</u> 0 | | 6 | 170 | 8 | unknown | | 7 | 120 | 8 | -25° | | 8 | 530 | 13 | -25°
-10° | | 9 | 150 | 8 | +100 | | 1 4 | 300 | 10 | +10° | It is probable that there is a systematic error in all angles measured by buoy 6. The notation "TM" means the Bermuda Time (GMT - 4 hours) of Greenwich upper transit of the moon. The anemometers on the buoys were so unreliable (due to circuit troubles) that all of their data is omitted. Winds tabulated are those on a 50 foot mast at the observatory at Bermuda. The exposure was not ideal, there being several hills, and a large building in the neighborhood. Particularly, the anemometer is partly sheltered from west winds. The notation "Trans. Time" means the Bermuda time at which the buoy wireless transmission was received. The current direction is the instantaneous magnetic direction of the surface current (vectorial difference of surface and deep) with the above corrections applied. The current speed is an average for the previous three hours (in the case of buoy 6, 90 minutes). The figures under "Wind Vane" are angle between the geographical orientation of the buoy and the wind direction measured by the vane on the buoy. Thus an angle of 000° means that the instantaneous wind and uncorrected current vectors point in the same direction; an angle of 030° means the uncorrected current is 30° to the left of the wind; an angle of 320° means the uncorrected current is 40° to the right of the wind. PARTE II # FOR EACH 10° MINE RESULTED (CONSESSION) FOR EACH 10° MINES OF DEVIATION OF ### Buoys 2, 3, 4, and 8 | 170 R
160 R | 6 | 010 L | 274 | |-------------------------|--|----------------------------------|------------------| | | | 020 L | 286 | | 150 R | 7 | 030 L | 297 | | 110 R | 18 | OHO L | 307 | | 130 R | 25 | 030 L
050 L
050 L | 309 | | 120 B | 30 | 060 L | mi | | 110 R | 15
25
25
36
36
36
36
36
36
36
36
36
36
36
36
36 | 070 L | TO THE BOX WELLS | | 200 B | • | 080 L | 77.6 | | 090 R | 22 | 090 L | 200 | | OBC R | 22 | 050 F | 320 | | | | 100 L | 367 | | 070 R | 77 | 110 L | 325 | | 960 2 | 203 | 120 L | 332. | | 050 R | 121 | 130 L | 333 | | 060 2
050 1
060 R | n
M
M
M
M | 120 L
130 L
140 L
150 L | 138 | | 030 R | 10. | 150 1. | 340 | | 020 B | 1720 | 160 L | 3 5 | | 010 R | 192 | 170 L | 34.5 | | 000 T | 223 | *10 7 | ~ | | ~~ | 443 | | | "Half the readings are on either side of this point. TABLE III ### 21-HOUR VECTORIAL MEANS OF CURRENT AND WINDS FOR DAYS WITH SYEADY MINDS | | | Wind | Wind | Carre | mt. | Angle of | | |----------|------|----------------|------------------|------------|-----------------------------|-------------------------|-----------------------| | Day | 3007 | blow
braves | spend
(knota) | Direction | Speci
(knots) | relative
Noticed (1) | to wind
Nothed (2) | | Oct. 29 | 3 | 01.8 | 20.0 | 060 | 1.09 | OLZ R | 07C B | | 29 | Ĺ | 018 | 30.0 | 070 | 0.70 | 052 R | 000 | | Nov. 3 | 3 |
225 | 6.1 | 230 | 0.2 | cos a | 025 R | | 6 | 3 | 305 | 17.2 | 365 | 0.64 | ONO R | OLS R | | | 3 | 230 | h.h | 235 | 0.72 | 005 R | OLO R | | 9 | 3 | 270 | 4.5 | 270 | 0.57 | 000 | 055 B | | 23(1) | 2 | 205 | 11.2 | 305 | 0.45 | 030 R | 00.0 R | | 24 | 2 | 335 | 6.0 | 335 | 0.56 | CEA | OUE I | | 20 | Z | 015 | 13.0 | 030 | 0.57 | 015 R | 005 R | | Dag. 2-3 | 2 | 150 | 13.0 | 170 | 0.50 | 020 R | 020 R | | 5 | 8 | 270 | 3.0 | (2) | 0.08 | (2) | (2) | | 8 | ě | 260 | 6.0 | (2)
(2) | 0.18 | (2) | (2) | | 1.0 | 7 | 140 | 13.0 | 220 | 0.61 | 080 E | (5) | | 19 | Ž | 145 | 16.0 | 225 | 0.67 | 080 R | B | | 22 | 7 | 030 | 17.0 | 075 | 0.60 | Old R | (5) | | 23 | 7 | 030
060 | 6.0 | 115 | 0.48 | 055 B | (3) | | Jan. 1 | ż | 150 | 16.0 | (5) | 0.70 | (3) | (3) | | 3-4 | 6 | 030 | 27.0 | (3) | 0.50 | (3) | (3) | | | 6 | 150 | 18.0 | (3) | 0.68 | (3) | 8 | | 23 (6) | 6 | 025 | 18.0 | (3) | 0.72 | (3) | (3) | | 26-27 | | 270 | 4.0 | αó | 0.16 | 200 R | 055 R | | Pab. 9 | 32 | 270 | 23.0 | (h) | 1.45 | (4) | Oh5 R | - (1) Current fats not available for eakire 2k nowne, but winds blow steady for provious four days. - (2) None direction massingless because of large carillatory molions. - (3) Angles have unknown systematic errors due to faulty brifling of Pasy &. - (h) Current data not available for entire 2h hours. - (5) Wind vani broken. ### TABLE IV ### INSEPTAL ANYLITUTES AND PHASE FOR DAYS SHOWING 25-HOUR ROTATORY GURRENES. ALL CASES ARE CUN SOLE. | | | | | Harima
ly Flor | |----------|------|----------------------|-------------------------|------------------------| | Day | Buoy | Amplitude
(kmpt#) | Joint Men
Solar Time | Greendsh
Lunar Time | | Oct. 29 | 3 | 0.20
0.25 | 1500
0800 | 1310
0530 | | Hov. 1 | 3 | 0.13 | 0430 | 0030 | | 9 | 3 | 0.10 | 2030
1330 | 11,00
0330 | | 25
27 | 2 2 | 0.06
0.85 | 0000 | 0030
2230 | | Dec. 6 | 8 | 0.25 | 0750
9630 | 2330
2165 | | 23
24 | 7 | 0.25 | 0900
1300 | 1000
1330 | | 26 | į | 0.06 | 1100
0730 | 1200 | | Jen. h | á | 0.20 | 0500 | 2330 | ### LEGENDS FOR FIGURES and the second s - Fig. 1. Tracks of the various bucys around Bermuda. Contours of the 100 and 1000 fathom lines are drawn in about the island. The tracks of different buoys are shown by different qualities of line. The Roman numerals indicate the month and the numbers immediately following them the day. Tracks ending in shallow water show buoys that came ashore. Tracks pointing off the chart indicate buoys which drifted out of radio-direction-finding range but which were still able to telemeter data properly. - Fig. 2. Schematic sketch of the buoy showing the radio mast and meteorological instruments above water, the current rotor and the deep drag each attached to ends of the outrigger arms. - Fig. 3. Detailed sketch of the construction of the rotor. - Fig. 4. Sample bathythermograph soundings showing the mixed water conditions prevailing through most of the period of measurement. - Fig. 5. Sample daily records of wind and current showing the response of the current to a strong wind and the aftereffects following it. - Fig. 6. Logarithmic graph of mean wind against mean surface current for days with steady wind. The solid line has slope of 1.0; the dashed line, slope of 1.5. FIG.5 FIG. 6 # DISTRIBUTION LIST Contract Nonr-769(00) (NR-083-069) | Copies | Addressee | |--------|---| | 1 | Commanding Officer Air Force Cambridge Research Center 230 Albany Street Cambridge 39, Massachusetts Attn: CRHSL | | 1 | Allan Hancock Foundation
University of Southern California
Los Angeles 7, California | | 5 | Arnud Services Technical Information Center
Documents Service Center
Knott Building
Dayton 2, Ohio | | 2 | Assistant Naval Attache for Research
American Embassy
Navy Number 100
Fleet Post Office
New York, New York | | 1 | Assistant Secretary of Defense for
Research & Development
Pentagon Building
Washington 25. D. C.
Attn: Committee on Geophysics and
Geography | | 1 | Head Department of Oceanography Brown University Providence, Rhode Island | | 1 | Director Chesapeake Bay Institute Box 426A R.F.D. #2 | | Copies | Addressee | |--------|---| | 2 | Chief, Bureau of Ships Department of the Navy Washington 25, D. C. Attn: Code 847 | | 1 | Chief, Bureau of Yards and Docks
Department of the Navy
Washington 25, D. C. | | 1 | Chief of Naval Operations (Op-533D)
Department of the Navy
Washington 25, D. C. | | 3 | Chief of Naval Research Department of the Navy Washington 25, D. C. Attn: Code 416 (2) Code 466 (1) | | 1 | Department of Conservation
Cornell University
Ithaca, New York
Attn: Dr. J. C. Ayers | | 1 | Commanding General Research and Development Division Department of the Air Force Washington 25, D. C. | | 1 | Commanding General Research and Development Division Department of the Army Washington 25, D. C. | | 1 | The Oceanographic Institute
Florida State University
Tallahassee, Florida | | Copies | Addressee | |--------|--| | 1 | Director
Lamont Geological Chservatory
Torrey Cliff
Palisades, New York | | 1 | Director
Narragansett Marine Laboratory
Kingston, Rhode Island | | 1 | National Research Council
2101 Constitution Avenue
Washington 25, D. C.
Attn: Committee on Undersea Warfare | | 1 | Commanding Officer Naval Ordnance Laboratory White Oak Silver Spring 19, Maryland | | 6 | Director Naval Research Laboratory Washington 25, D. C. Attn: Technical Information Officer | | 1 | Office of Naval Research Branch Office
1030 East Green Street
Pasadena 1, California | | 1 | Office of Naval Research Branch Office
1000 Geary Street
San Francisco 9, California | | ı | Office of Naval Research Branch Office
Tenth Floor, John Crerar Library Bldg.
86 East Randolph Street
Chicago, Illinois | | 1 | Office of Naval Research Branch Office
150 Causeway Street
Boston 14, Massachusetts | | Copies | Addressee | |--------|--| | 1 | Office of Naval Research Branch Office
346 Broadway
New York 13, New York | | 2 | Officer-in-Charge Office of Naval Research London Branch Office Navy Number 100 Fleet Post Office New York, New York | | 1 | Office of Technical Services Department of Commerce Washington 25, D. C. | | 1 | Dr. Willard J. Pierson
New York University
New York 53, New York | | 1 | Department of Zoology
Rutgers University
New Brunswick, New Jersey
Attn: Dr. H. H. Haskin | | 2 | Director
Scripps Institution of Oceanography
La Jolla, California | | ı | Head Department of Oceanography Texas A & M College Station, Texas | | 1 | Department of Engineering
University of California
Berkeley, California | | 1 | Director
Hawaii Marine Laboratory
University of Hawaii
Honolulu, T. H. | | Copies | Addressee | |--------|---| | 1 | Director Marine Laboratory University of Mismi Coral Gables 34, Florida | | 1 | Head Department of Oceanography University of Washington Seattle 5, Washington | | 1 | U. S. Army Beach Erosion Board 5201 Little Falls Road, N. W. Washington 16, D. C. | | 1 | Director U. S. Coast and Geodetic Survey Department of Commerce Washington 25, D. C. | | 1 | Commandant (OFU) U. S. Coast Guard Washington 25, D. C. | | 1 | U. S. Fish and Wildlife Service
450 B Jordan Hall
Stanford University
Stanford, California | | 1 | U. S. Fish and Wildlife Service
Fort Crockett
Galveston, Texas | | 1 | U. S. Fish and Wildlife Service
F. O. Box 3830
Homolulu, T. H. | | 1 | U. S. Fish and Wildlife Service
Woods Hole
Massachusetts | | Copies | Addressee | |--------|--| | 2 | Director U. S. Fish and Wildlife Service Department of the Interior Washington 25, D. C. Attn: Dr. L. A. Walford | | 1 | Project Arowa U. S. Naval Air Station, Bldg. R-48 Norfolk, Virginia | | ì | Department of Aerology
U. S. Naval Post Graduate School
Monterey, California | | 2 | Director U. S. Navy Electronics Laboratory San Diego 52, California Attn: Code 550 Code 552 | | 8 | Hydrographer U. S. Navy Hydrographic Office Washington 25, D. C. Attn: Division of Oceanography | | 1 | Bingham Oceanographic Foundation
Yale University
New Haven, Connecticut |